Flow rate limitation of steady convective dominated open capillary channel flows through a groove
نویسندگان
چکیده
An open capillary channel is a structure that establishes a liquid flow path when the capillary pressure caused by surface tension forces dominates in comparison to the hydrostatic pressure induced by gravitational or residual accelerations. To maintain a steady flow through the channel the capillary pressure of the free surface has to balance the pressure difference between the liquid and the surrounding constant pressure gas phase. Due to convective and viscous momentum transport the pressure along the flow path of the liquid decreases and causes the free surface to bend inwards. The maximum flow rate through the channel is reached when the free surface collapses and gas ingestion occurs near the outlet. This stability limit depends on the geometry of the channel and the properties of the liquid. In this paper we present an experimental setup which is used in the low-gravity environment of the Bremen Drop Tower. Experiments with convective dominated systems have been performed where the flow rate was increased up to the maximum value. In comparison to this we present a one-dimensional theoretical model to determine important characteristics of the flow, such as the free surface shape and the limiting flow rate. Furthermore we present an explanation for the mechanism of flow rate limitation for these flow conditions which is similar to the choking problem for compressible gas flows.
منابع مشابه
Entropy generation analysis of MHD forced convective flow through a horizontal porous channel
Entropy generation due to viscous incompressible MHD forced convective dissipative fluid flow through a horizontal channel of finite depth in the existence of an inclined magnetic field and heat source effect has been examined. The governing non-linear partial differential equations for momentum, energy and entropy generation are derived and solved by using the analytical method. In addition; t...
متن کاملEvaluation of Recirculation Time in Bubble Train Flow by Using Direct Numerical Simulation
In this research, hydrodynamics of the Bubble Train Flows (BTF) in circular capillaries has been investigated by Direct Numerical Simulation (DNS).The Volume of Fluid Based (VOF) interface tracking method and streamwise direction periodic boundary conditions has been applied. The results show that there exists an appropriate agreement between DNS and experimental correlation results. The re...
متن کاملAssessment of Turbulent Models in Computation of Strongly Curved Open Channel Flows
Several rigorous turbulent models have been developed in the past years and it can be seen that more research is needed to reach a better understanding of their generality and precision by verifying their applications for distinct hydraulic phenomena; under certain assumptions. This survey evaluates the performance of Standard k-ε, Realizable k-ε, RNG k-ε, k-ω and RSM models in predicting flow ...
متن کاملOn the natural convective heat transfer from a cold horizontal cylinder over an adiabatic surface
A steady two-dimensional laminar free convection heat transfer from a cold horizontal isothermal cylinder located above an adiabatic floor is studied both experimentally and numerically. In the experimental measurements the effects of cylinder distance from horizontal floor to its diameter (L/D) on heat transfer coefficient is studied for Rayleigh numbers of 3×105 and 6×105. Computations are ma...
متن کاملEntropy Generation In an Unsteady MHD Channel Flow With Navier Slip and Asymmetric Convective Cooling
The combined effects of magnetic field, Navier slip and convective heating on the entropy generation in a flow of a viscous incompressible electrically conducting fluid between two infinite horizontal parallel plates under a constant pressure gradient have been examined. Both the lower and upper plates of the channel are subjected to asymmetric convective heat exchange with the ambient fluid. T...
متن کامل